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Error-in-variables

Error-in-variables (EIV)
A regression model with measurement errors in explanatory
variables.

In this research, we focus on estimation methods of a Poisson
regression model with EIV.
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An example of a Poisson regression with EIV

Real data examples include epidemiologic studies (e.g., [1]).

𝑌 : Cardiovascular disease emergency visits
𝑋 : True exposure amount (air pollutants)

Consider regressing 𝑌 on 𝑋 , but 𝑋 is subject to measurement error
𝑈 due to instrument imprecision and spatial variability.
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Research status of a Poisson regression model with EIV

Table: Bias correction using estimating equations of EIV

Explanatory variable Normal General

Univariate Kukush et al. [2] Wada et al. [3]
Multivariate(All error) Shklyar et al. [4] Wada et al. [5]

Multivariate(Partial error) Wada et al. [5] Wada et al. [5]

All error : All explanatory variables are subject to errors
Partial error : Explanatory variables are partially subject to errors

We call the estimator in Wada et al. [5] the CPN estimator.
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Problems of the CPN estimator

Although the CPN estimator is consistent for regression parameters,
there are the following problems.

1 We can not obtain an explicit form of the CPN estimator
depending on distributions of explanatory variables and errors.

2 Tedious calculations are required to obtain the explicit form of
the CPN estimator.
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Purpose of this research

Table: Bias correction based on the corrected score function

Explanatory variable Normal General

Univariate Kukush et al. [2] Not finished
Multivariate(All error) Shklyar et al. [4] Not finished

Multivariate(Partial error) Not finished Not finished

We propose the following extension to the Corrected Score (CS)
estimator discussed in Kukush et al. [2] and Shklyar et al. [4].

1 Explanatory variables are partially subject to errors in the
multivariate EIV.

2 Explanatory variable and error vectors follow arbitrary
distributions.
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Contributions of this research

Under multivariate EIV included errors partially in the explanatory
variables,

it becomes possible to perform a consistent estimation for the
regression parameters

even when the CPN estimator cannot be computed in an explicit
form.
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A Poisson regression model with multivariate regressor

We assume a Poisson regression model between the objective
variable 𝑌 and the vector of explanatory variables
X = (𝑋1, . . . , 𝑋𝑝+𝑞)′:

𝑌 |X ∼ Po
(
exp

(
β′

(
1
X

)))
, β = (𝛽0, . . . , 𝛽𝑝+𝑞)′ ∈ R𝑝+𝑞+1. (1)
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Subvectors of explanatory variables

We define subvectors of X as:

X𝑜 = (𝑋1, . . . , 𝑋𝑝)′, X𝑒 = (𝑋𝑝+1, . . . , 𝑋𝑝+𝑞)′. (2)

While X𝑜 represents a vector of explanatory variables that can be
observed directly, X𝑒 represents a vector of explanatory variables
that cannot be observed directly.
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Multivariate EIV

We assume here that
W =X𝑒 +U .
U is supposed to be independent of (X , 𝑌 ).
(X𝑖 = (X′

𝑜,𝑖,X
′
𝑒,𝑖)′, 𝑌𝑖) (𝑖 = 1, . . . , 𝑛) are i.i.d. samples from the

distribution of (X , 𝑌 ) and U𝑖 (𝑖 = 1, . . . , 𝑛) are i.i.d. samples
from the distribution of U .

Although we can observe 𝑌𝑖,X𝑜,𝑖,W𝑖 =X𝑒,𝑖 +U𝑖 (𝑖 = 1, . . . , 𝑛), we
assume that X𝑒 and U cannot be observed directly.
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Assumptions of EIV model

In EIV models, it is common that some of the parameters of the
model are known [6].

Regression with known mean and variance of U .
Regression with known mean of U and variance ratio of
components of X𝑒 and W .

In this study, we assume that the mean and variance of U are
known.
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Partial-error Naive (PN) estimator

PN estimator
The estimator using the observed variables W with errors in place
of the unobserved explanatory variables X𝑒 in the likelihood
equation of 𝑌 |X [5].
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Misspecified estimation of the PN estimator

In other words, the PN estimator applies MLE using a misspecified
model that assumes

𝑌

����( X𝑜

W

)
∼ Po ©­«exp ©­«β′ ©­«

1
X𝑜

W

ª®¬ª®¬ª®¬ .
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Inconsistency of the PN estimator

The PN estimator is inconsistent for β because it estimates the
parameter incorrectly.

β̂(𝑃𝑁) 𝑎.𝑠.−→ b ≠ β,

where b is a constant vector defined as a solution to the following
estimating equation:

EX ,W [E𝑌 | (X ,W ) [{𝑌−exp(𝑏0+b′1X𝑜+b′2W )}(1,X′
𝑜,W

′)′]] = 0𝑝+𝑞+1.
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Corrected Partial-error Naive (CPN) estimator

The PN estimator has an asymptotic bias for true β.

⇒ Wada and Kurosawa [5] proposed the CPN estimator as a
consistent estimator by correcting the bias of the PN estimator.
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Score function of a Poisson regression model

The score function of a Poisson regression model (1) is given by

ψ(β |𝑌,X) = (𝑌 − exp(𝛽0 + β′
1X𝑜 + β′

2X𝑒))
(

1
X

)
.
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Corrected score function

Corrected score function
A function such that its conditional expectation given 𝑌 and X
equals the true score function in EIV models [7, 8].

Therefore, we construct the corrected score function
ψ𝑐 : R𝑝+𝑞+1 → R𝑝+𝑞+1 to satisfy

E [ψ𝑐 (β |𝑌,X𝑜,W ) |𝑌,X] = ψ(β |𝑌,X).
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Corrected score function under multivariate EIV

The function ψ𝑐 (β |𝑌,X𝑜,W ) can be obtained by

𝑌
©­«

1
X𝑜

W − E[U ]
ª®¬−

exp(𝛽0 + β′
1X𝑜 + β′

2W )
𝑀U (β2)

©­­«
1
X𝑜

W − 1
𝑀U (β2)

𝜕𝑀U (β2)
𝜕β2

ª®®¬ .
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Partial-error Corrected Score (PCS) estimator

Thus, we define the PCS estimator as a solution to the corrected
estimating equation:

𝑛∑
𝑖=1
ψ𝑐 (β̂(𝑃𝐶𝑆) |𝑌𝑖,X𝑜,𝑖,W𝑖) = 0𝑝+𝑞+1 (3)

and propose it as a consistent estimator for β. This definition is a
natural extension of the univariate CS estimator discussed in Kukush
et al. [2].
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Numerical algorithm

We derive a solution to equation (3) using the Newton-Raphson
method with the following update formula.

β(𝑘+1) = β(𝑘) −
(
𝑛∑
𝑖=1

𝜕ψ𝑐 (β̂(𝑘) |𝑌𝑖,X𝑜,𝑖,W𝑖)
𝜕β′

)−1

×
(
𝑛∑
𝑖=1
ψ𝑐 (β̂(𝑘) |𝑌𝑖,X𝑜,𝑖,W𝑖)

)
(𝑘 = 0, 1, 2, . . .),

where β(0) = β̂(𝑃𝑁).
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Simulation studies

Multivariate normal distribution + normal error (𝑝 = 2, 𝑞 = 1)

X ∼ 𝑁3(µ, Σ), 𝑈 ∼ 𝑁 (0, 𝜎2)

Gumbel distribution + normal error (𝑝 = 0, 𝑞 = 2)

𝑋1 ∼ 𝐺𝑢(𝜇1, 𝜂1), 𝑋2 ∼ 𝐺𝑢(𝜇2, 𝜂2), 𝑈1 ∼ 𝑁 (0, 𝜎2
1 ), 𝑈2 ∼ 𝑁 (0, 𝜎2

2 )

We perform simulations in above 2 ways with 𝑛 as the sample size
and 𝑀𝐶 as the number of simulations.
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Simulation configuration 1 (𝑝 = 2, 𝑞 = 1)

We assume the Poisson regression model with multivariate
EIV (𝑝 = 2, 𝑞 = 1).

𝑌 |X ∼ Po
(
exp

(
β′

(
1
X

)))
, β ∈ R4,

X𝑜 = (𝑋1, 𝑋2)′, 𝑋𝑒 = 𝑋3, 𝑊 = 𝑋3 +𝑈,
X = (𝑋1, 𝑋2, 𝑋3)′ ∼ 𝑁3(µ, Σ), 𝑈 ∼ 𝑁 (0, 𝜎2),

µ ∈ R3, Σ ∈ R3×3, 0 < 𝜎2 < ∞.
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Parameter configuration (Multivariate normal+normal
error)

We set the parameters as

β =
©­­­«

0.1
0.1
0.2
0.3

ª®®®¬ , µ = ©­«
1

1.2
0.5

ª®¬ , Σ = ©­«
1 0.2 −0.5

0.2 1.1 0.3
−0.5 0.3 1.2

ª®¬ ,
𝑛 = 5000, 𝑀𝐶 = 10000, 𝜖 = 10−8, the maximum number of
iterations as 100 and calculate the estimated bias with
𝜎2 = 0.25, 0.5, 0.75, 1, 1.25.
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Results of estimated bias (𝛽0, 𝛽1)
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Figure: Estimated bias for 𝛽0
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Figure: Estimated bias for 𝛽1
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Results of estimated bias (𝛽2, 𝛽3)
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Figure: Estimated bias for 𝛽2
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Figure: Estimated bias for 𝛽3
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Simulation configuration 2 (𝑝 = 0, 𝑞 = 2)

We assume the Poisson regression model with multivariate
EIV (𝑝 = 0, 𝑞 = 2).

𝑌 |X ∼ Po
(
exp

(
β′

(
1
X

)))
, β ∈ R3,

X𝑒 = (𝑋1, 𝑋2)′ =X , 𝑊1 = 𝑋1 +𝑈1, 𝑊2 = 𝑋2 +𝑈2,

𝑋1 ∼ 𝐺𝑢(𝜇1, 𝜂1), 𝑋2 ∼ 𝐺𝑢(𝜇2, 𝜂2), 𝑈1 ∼ 𝑁 (0, 𝜎2
1 ), 𝑈2 ∼ 𝑁 (0, 𝜎2

2 ),

𝜇1, 𝜇2 ∈ R, 𝜂1 > 0, 𝜂2 > 0, 0 < 𝜎2
1 < ∞, 0 < 𝜎2

2 < ∞.
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Parameter configuration (Gumbel+normal error)

We set the parameters as

β = ©­«
0.1
0.2
0.3

ª®¬ , 𝜇1 = −0.5, 𝜂1 = 1, 𝜇2 = 0.25, 𝜂2 = 0.5, 𝜎2
2 = 0.5,

𝑛 = 5000, 𝑀𝐶 = 10000, 𝜖 = 10−8, the maximum number of
iterations as 100 and calculate the estimated bias with
𝜎2

1 = 0.25, 0.5, 0.75, 1, 1.25.
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Results of estimated bias (𝛽0, 𝛽1)
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Figure: Estimated bias for 𝛽0
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Figure: Estimated bias for 𝛽1
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Results of estimated bias (𝛽2)
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Figure: Estimated bias for 𝛽2
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Summary

We extend the CS estimator to multivariate EIV with partially
included errors in explanatory variables.
Consistent estimation is possible even when the CPN estimator
cannot be computed in closed form.
The PCS estimator achieves estimation performance
comparable to the CPN estimator, even in cases where the
CPN estimator is computable.
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Future works

Consider numerical algorithms with reduced computational
cost.
Derive an asymptotic distribution of the PCS estimator.
Construct confidence intervals of the regression parameter
under multivariate EIV.
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Notations

𝑀X : Moment generating function of a random vector X
𝐾X : Cumulant generating function of a random vector X
β1 : Subvector of β corresponding to X𝑜

β2 : Subvector of β corresponding to X𝑒
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Definition of the PN estimator

The PN estimator β̂(𝑃𝑁) for β is defined as the solution of the
following equation [5]:

𝑆𝑛 (β̂(𝑃𝑁)) = 0𝑝+𝑞+1,

where

𝑆𝑛 (b̃) =
1
𝑛

𝑛∑
𝑖=1

{𝑌𝑖 − exp(𝑏̃0 + b̃′1X𝑜,𝑖 + b̃′2W𝑖)}(1,X′
𝑜,𝑖,W

′
𝑖 )′,

b̃ = (𝑏̃0, . . . , 𝑏̃𝑝+𝑞)′,

b̃1 = (𝑏̃1, . . . , 𝑏̃𝑝)′, b̃2 = (𝑏̃𝑝+1, . . . , 𝑏̃𝑝+𝑞)′ are subvectors of b̃ and
0𝑝+𝑞+1 is a (𝑝 + 𝑞 + 1)-dimensional vector with zeros.

Kentarou Wada and Takeshi Kurosawa November 26, 2025 43 / 56



Exact distribution of 𝑌 given (X𝑜,W )

𝑓𝑌 | (X𝑜,W ) (𝑦 | (x𝑜,w))

=

∫
Po

(
exp

(
β′

(
1
x

)))
𝑓U (w − x𝑒) 𝑓X (x)𝑑x𝑒∫

𝑓U (w − x𝑒) 𝑓X (x)𝑑x𝑒
.

The exact distribution of 𝑌 given (X𝑜,W ) is not a Poisson
regression model.
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Assumptions for the CPN estimator

We assume the following conditions (C1) and (C2).

(C1) 𝑀X

(
β1
β2

)
, 𝑀X

(
b1
b2

)
, and 𝑀U (b2) exist.

(C2) det 𝜕G

𝜕

(
β1
β2

) ′ ≠ 0 is satisfied where

G =
©­­­«

𝜕
𝜕b1
𝐾X

(
b1
b2

)
− 𝜕
𝜕β1

𝐾X

(
β1
β2

)
𝜕
𝜕b2
𝐾X

(
b1
b2

)
+ 𝜕
𝜕b2
𝐾U (b2) − E[U ] − 𝜕

𝜕β2
𝐾X

(
β1
β2

) ª®®®¬ .
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Formula of the CPN estimator

𝛽(𝐶𝑃𝑁)0 = 𝛽(𝑃𝑁)0 + log

©­­­­­­«
𝑀X

(
β̂(𝑃𝑁)

1
β̂(𝑃𝑁)

2

)
𝑀U (β̂(𝑃𝑁)

2 )

𝑀X

(
β̂(𝐶𝑃𝑁)

1
β̂(𝐶𝑃𝑁)

2

) ª®®®®®®¬
,

(
β̂(𝐶𝑃𝑁)

1
β̂(𝐶𝑃𝑁)

2

)
= h

(
β̂(𝑃𝑁)

1
β̂(𝑃𝑁)

2

)
,

where h is a continuously differentiable implicit function with(
β1
β2

)
= h

(
b1
b2

)
in the neighborhood of

((
β1
β2

)
,

(
b1
b2

))
satisfying G = 0.
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Application example of the CPN estimator

We assume the Poisson regression model with multivariate
EIV (𝑝 = 2, 𝑞 = 1).

𝑌 |X ∼ Po
(
exp

(
β′

(
1
X

)))
, β ∈ R4,

X𝑜 = (𝑋1, 𝑋2)′, 𝑋𝑒 = 𝑋3, 𝑊 = 𝑋3 +𝑈,
X = (𝑋1, 𝑋2, 𝑋3)′ ∼ 𝑁3(µ, Σ), 𝑈 ∼ 𝑁 (0, 𝜎2),

µ ∈ R3, Σ ∈ R3×3, 0 < 𝜎2 < ∞.
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Application example of the CPN estimator

We use following partition expressions of µ and Σ.

µ =

(
µ1
𝜇3

)
, Σ =

(
Σ1 σ3
σ′

3 𝜎33

)
,

where

µ1 =

(
𝜇1
𝜇2

)
, Σ1 =

(
𝜎11 𝜎12
𝜎12 𝜎22

)
, σ3 =

(
𝜎13
𝜎23

)
.
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Application example of the CPN estimator

𝛽(𝐶𝑃𝑁)0 = 𝛽(𝑃𝑁)0 +
(
β̂(𝑃𝑁)

1 − β̂(𝐶𝑃𝑁)
1

)′
µ1 +

(
𝛽(𝑃𝑁)3 − 𝛽(𝐶𝑃𝑁)3

)
𝜇3

− 1
2

(
β̂(𝐶𝑃𝑁)′

1 Σ1β̂
(𝐶𝑃𝑁)
1 + 𝛽(𝐶𝑃𝑁)3

(
2σ′

3β̂
(𝐶𝑃𝑁)
1 + 𝜎33𝛽

(𝐶𝑃𝑁)
3

))
+ 1

2

(
β̂(𝑃𝑁)′

1 Σ1β̂
(𝑃𝑁)
1 + 𝛽(𝑃𝑁)3

(
2σ′

3β̂
(𝑃𝑁)
1 + 𝜎33𝛽

(𝑃𝑁)
3

))
+ 1

2
𝜎2𝛽(𝑃𝑁)23 ,

β̂(𝐶𝑃𝑁)
1 = β̂(𝑃𝑁)

1 −
𝜎2𝛽(𝑃𝑁)3

𝜎33 − σ′
3Σ

−1
1 σ3

Σ−1
1 σ3,

𝛽(𝐶𝑃𝑁)3 =
𝜎33 + 𝜎2 − σ′

3Σ
−1
1 σ3

𝜎33 − σ′
3Σ

−1
1 σ3

𝛽(𝑃𝑁)3 .
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Estimation of µ and Σ

We can estimate µ and Σ in the formula of the CPN estimator using
the method of moments in terms of X𝑜 = (𝑋1, 𝑋2)′ and 𝑊 .

µ̂1 =
1
𝑛

𝑛∑
𝑖=1
x𝑜,𝑖, 𝜇̂3 =

1
𝑛

𝑛∑
𝑖=1

𝑤𝑖,

Σ̂1 =
1
𝑛

𝑛∑
𝑖=1

(x𝑜,𝑖 − x̄𝑜)(x𝑜,𝑖 − x̄𝑜)′,

σ̂3 =
1
𝑛

𝑛∑
𝑖=1

(x𝑜,𝑖 − x̄𝑜)(𝑤𝑖 − 𝑤̄),

𝜎̂33 =
1
𝑛

𝑛∑
𝑖=1

(𝑤𝑖 − 𝑤̄)2 − 𝜎2.
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PCS estimator

Theorem 1
Let 𝑌 |X be a Poisson regression model in (1) with (2). We assume
the following condition (D1).

(D1) 𝑀U (β2) exists and is differentiable in the neighborhood of β2.
Then, the PCS estimator β̂(𝑃𝐶𝑆) of β, which is defined as a solution
of equation (3), is strongly consistent.
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Convergence of the corrected estimating equation

By the strong law of large numbers, we obtain

1
𝑛

𝑛∑
𝑖=1
ψ𝑐 (β̂(𝑃𝐶𝑆) |𝑌𝑖,X𝑜,𝑖,W𝑖)

𝑎.𝑠.−→ E
[
ψ𝑐 (β̂(𝑃𝐶𝑆) |𝑌,X𝑜,W )

]
.
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Expectation of the corrected score function

We can calculate the expectation of ψ𝑐 as

EX ,𝑌 ,U [ψ𝑐 (β |𝑌,X𝑜,W )]
= EX ,𝑌 [E[ψ𝑐 (β |𝑌,X𝑜,W ) |X , 𝑌 ]]

= EX ,𝑌

[
(𝑌 − exp(𝛽0 + β′

1X𝑜 + β′
2X𝑒))

(
1
X

)]
= 0.
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Strong consistency of the PCS estimator

From the same argument in Kukush and Shklyar [9], we obtain the
strong consistency of the PCS estimator:

β̂(𝑃𝐶𝑆) 𝑎.𝑠.−→ β.
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Conditions for the convergence of numerical algorithm

We implicitly assume the following conditions (D2)-(D4) to ensure
that the algorithms converge.

(D2) E
[
𝜕ψ𝑐 (β |𝑌,X𝑜,W )

𝜕β′

]
exists and is nonsingular.

(D3) ψ𝑐 is differentiable and locally Lipschitz continuous.
(D4) Satisfying

𝛼0 = 𝑀






(𝜕𝐹 (β(0))
𝜕β′

)−1




 


h(0)



 ≤ 1

2
,

where

h(0) = −
(
𝜕𝐹 (β(0))
𝜕β′

)−1

𝐹 (β(0)), 𝐹 (β) =
𝑛∑
𝑖=1
ψ𝑐 (β |𝑌𝑖,X𝑜,𝑖,W𝑖)

and 𝑀 is a Lipschitz constant of 𝜕𝐹
𝜕β′ .
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Stopping criterion for numerical algorithm

The iteration is stopped when one of the following stopping criteria is
fulfilled.

1 | |β(𝑘+1) − β(𝑘) | | < 𝜖 is satisfied for a pre-specified 𝜖 > 0.
2 The maximum number of iterations has been reached.
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